The Dyck pattern poset
نویسندگان
چکیده
We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the number of Dyck paths covering P . We then address some typical pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. We also compute the generating function of Dyck paths avoiding any single pattern in a recursive fashion, from which we deduce the exact enumeration of such a class of paths. Finally, we describe the asymptotic behavior of the sequence counting Dyck paths avoiding a generic pattern, we prove that the Dyck pattern poset is a well-ordering and we propose a list of open problems. Proposed running head : The Dyck pattern poset. AMS Classification (2010): 05A15, 05A16, 06A07.
منابع مشابه
Pattern - avoiding Dyck paths †
We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the ...
متن کاملThe m - Cover Posets and the Strip - Decomposition of m - Dyck Paths ( Extended
In the first part of this article we present a realization of the m-Tamari lattice T (m) n in terms of m-tuples of Dyck paths of height n, equipped with componentwise rotation order. For that, we define the m-cover poset P〈m〉 of an arbitrary bounded poset P , and show that the smallest lattice completion of the m-cover poset of the Tamari lattice Tn is isomorphic to the m-Tamari lattice T (m) n...
متن کاملDyck algebras, interval temporal logic and posets of intervals
We investigate a natural Heyting algebra structure on the set of Dyck paths of the same length. We provide a geometrical description of the operations of pseudocomplement and relative pseudocomplement, as well as of regular elements. We also find a logic-theoretic interpretation of such Heyting algebras, which we call Dyck algebras, by showing that they are the algebraic counterpart of a certai...
متن کاملEnumeration of saturated chains in Dyck lattices
We determine a general formula to compute the number of saturated chains in Dyck lattices, and we apply it to find the number of saturated chains of length 2 and 3. We also compute what we call the Hasse index (of order 2 and 3) of Dyck lattices, which is the ratio between the total number of saturated chains (of length 2 and 3) and the cardinality of the underlying poset.
متن کاملA Decomposition of Parking Functions by Undesired Spaces
There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 321 شماره
صفحات -
تاریخ انتشار 2014